If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+34x-21=0
a = 11; b = 34; c = -21;
Δ = b2-4ac
Δ = 342-4·11·(-21)
Δ = 2080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2080}=\sqrt{16*130}=\sqrt{16}*\sqrt{130}=4\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-4\sqrt{130}}{2*11}=\frac{-34-4\sqrt{130}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+4\sqrt{130}}{2*11}=\frac{-34+4\sqrt{130}}{22} $
| -17=-5-3w | | 57=6b-(-3b+6) | | 12x^2-48x=-0.5 | | 10x=6.6-x=0.6 | | 56-u=194 | | 58=1-(7x-8) | | 7(2x+1)^2+20(2x+1)=3 | | -30=5v+10 | | -18=-4+m | | (3x+2)=(2x+13) | | 2x3=69 | | 6x2-16x=13-7x | | 40t^2+80t-90=0 | | 4/y13=14 | | 12-3s=9s-12 | | 4+20x=100 | | 5j+2/3=1/2=18 | | 3.6*x=1 | | x=-10^2+12x+8 | | x=-10x2+12x+8 | | 3x(33)+10=180 | | 1200-5(3x30)=600 | | 1.200-5(3x30+30)=600 | | x+100=2x+3 | | 468+17=26x | | 2+6x=(6x+4)-2 | | -2a=-8=4a | | 1/4(8w-12)=2w-3 | | 16(6t+-3)=200 | | 8=2a=a4 | | 7.5-4u=1.1 | | 131070=n^2+n |